On meromorphic maps into the complex projective space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maps into projective spaces

We compute the cohomology of the Picard bundle on the desingularization J̃ d (Y ) of the compactified Jacobian of an irreducible nodal curve Y . We use it to compute the cohomology classes of the Brill–Noether loci in J̃ d (Y ). We show that the moduli space M of morphisms of a fixed degree from Y to a projective space has a smooth compactification. As another application of the cohomology of the...

متن کامل

Pseudo Ricci symmetric real hypersurfaces of a complex projective space

Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.

متن کامل

Spaces of algebraic maps from real projective spaces into complex projective spaces

We study the homotopy types of spaces of algebraic (rational) maps from real projective spaces into complex projective spaces. It was already shown in [1] that the inclusion of the first space into the second one is a homotopy equivalence. In this paper we prove that the homotopy types of the terms of the natural ‘degree’ filtration approximate closer and closer the homotopy type of the space o...

متن کامل

Extending Self-maps to Projective Space

Using the closed point sieve, we extend to finite fields the following theorem proved by A. Bhatnagar and L. Szpiro over infinite fields: if X is a closed subscheme of P over a field, and φ : X → X satisfies φOX(1) ' OX(d) for some d ≥ 2, then there exists r ≥ 1 such that φ extends to a morphism P → P.

متن کامل

The Space of Harmonic Maps from the 2-sphere to the Complex Projective Plane

In this paper we study the topology of the space of harmonic maps from S to CP. We prove that the subspaces consisting of maps of a fixed degree and energy are path connected. By a result of Guest and Ohnita it follows that the same is true for the space of harmonic maps to CPn for n≥2. We show that the components of maps to CP are complex manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Mathematical Society of Japan

سال: 1974

ISSN: 0025-5645

DOI: 10.2969/jmsj/02620272